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BACKGROUND
 Resource adequacy

– The ability to provide adequate supply during peak load and stressed 

system conditions

– Typically measured using long-term reliability standards 

(e.g. LOLE, LOLH, LOLP)

 Resource adequacy requirements

– E.g., planning reserve margin

: translates the reliability standards into a reserve margin



MARKET DESIGN FOR RESOURCE ADEQUACY
 Vertically integrated system

– Centralized generation expansion planning

– Integrated resource planning

 Restructured electricity markets

– Market-based mechanisms to promote investments to meet resource 

adequacy requirements

 Energy-only markets (ERCOT)

 Capacity remuneration mechanisms (CRMs)

• Capacity obligation and market (ISO-NE, MISO, NYISO, PJM)

• Capacity obligation (CAISO, SPP)

• Capacity payments

• Strategic reserves
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RESEARCH MOTIVATION
 Investigate resource adequacy in a competitive market environment

– Main driver: Individual profit-maximizing generating companies (GenCos)

– Various market designs and conditions to consider:

• Electricity market design, in particular CRMs

• Industry structure and level of competition

• VRE penetration level

 Traditional centralized capacity expansion models

– Minimizes system cost, cannot capture the decision making of individual 

generation GenCos

– Limited ability to assess the effectiveness of capacity remuneration 

mechanisms

 Other tools needed to investigate market dynamics and resource adequacy in a 

competitive market environment
4



MULTI-AGENT RESOURCE PLANNING MODEL
 Captures strategic interactions between individual GenCos’ investment decisions

 Considers revenues from capacity + energy/reserve markets

 Bi-level programming formulation
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Goal: Find an equilibrium investment and retirement solution

Philosophy: Stackelberg leader-follower games

Method: Diagonalization Method



SOLUTION APPROACH 
 A GenCo’s decision solved individually as Stackelberg leader-follower game

 Nash Equilibrium among GenCos found with “diagonalization method”
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 Least-cost model: finds optimal 

generation portfolio while minimizing 

system-wide costs

 Individual Genco model: finds 

optimal generation portfolio while 

maximizing own profits

LEAST-COST MODEL FOR COMPARISON
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INDIVIDUAL GENCO PROBLEM
 Mathematical Problem with Equilibrium Constraints (MPEC)

 MPEC re-formulated as a MILP

 Further computational performance enhancement using a decomposition method

9

(Optimality Condition: Lower Lever 1) 
Capacity Market

Max. Revenue_CM + Profit_EM – 

Capital Cost – O&M Cost

Multi-Agent Generation 

Planning Model 

(Single-level, MILP)

Investment / Retirement 

Constraints

(Optimality Condition: Lower Level 2, 
Daytype 1)

Energy & Reserve Market (SCED)

(Optimality Condition: Lower Level 2, 
Daytype D)

Energy & Reserve Market (SCED)

(Lower Lever 1)

Capacity Market

Max. Revenue_CM + Profit_EM – 

Capital Cost – O&M Cost

Multi-Agent Generation 

Planning Model 

(Bi-level, MINLP)

Investment / Retirement 

Constraints

(Lower Level 2, Daytype 1)

Energy & Reserve Market (SCED)

(Lower Level 2, Daytype D)

Energy & Reserve Market (SCED)

Primal-Dual 

Reformulation

Linear 

Representation



CASE STUDY
 Simplified “ERCOT”-like system for 2030

– Projected peak load: 86,613 MW (1.57% increase per year)

– Simple transmission system (9 nodes, 34 lines)

– 30 representative days (scenario reduction)

 Generation Portfolio and GenCos

– Total system capacity: 94,916 MW (ICAP), 77,218 MW (UCAP) 

– No. of existing thermal units: 176  51

– No. of existing GenCos: 23 - No. of new entrants: 8
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Node 1 2 3 4 5 6 7 8 9
Total

ICAP

Capacity 

Factor

Total 

UCAP

Coal 2,127 8,347 1,770 1,804 538 925 0 0 0 15,511 1.00 15,511

NGCC 8,451 11,854 6,914 1,758 498 300 3,259 0 0 33,035 1.00 33,035

NGCT 5,373 5,040 804 2,646 1,845 811 672 1,210 0 18,401 1.00 18,401

Nuclear 0 2,328 2,632 0 0 0 0 0 0 4,960 1.00 4,960

Wind 0 3,756 4,967 12,793 0 0 0 0 0 21,516 0.19 4,191

Solar 0 0 1,493 0 0 0 0 0 0 1,493 0.75 1,120

Total 15,952 31,325 18,581 19,001 2,881 2,035 3,932 1,210 0 94,916 77,218



ANALYSIS DESIGN
 Investment Options

11

Type
Size 

(MW)

Overnight 

cost ($/kW)

Life 

Cycle

Fixed O&M 

Cost 

($/kW/Year)

Variable O&M 

Cost

($/MWh)

Fuel Cost 

($/MMBTU)

Weighted Average 

Cost of Capital (%)

NGCC 400 1,026 30 10.25 3.08 4.64 5.3

NGCT 200 873 30 12.30 7.18 4.64 5.3

 Cost of New Entry (CONE)
– $177.6 /MW-day

– Capital cost, fixed O&M cost, and life cycle of 

NGCT unit

– Net CONE = CONE – revenue offset from 

energy/reserves (30%)

 Target installed reserve margin (IRM): 
– 13.75%

Scenario
Wind 

Capacity (MW)

Penetration

Level (%)

Base 21,516 18.4

Modest 30,070 25.7

High 38,625 33.1

 VRE Penetration Levels



MARKET DESIGN OPTIONS
 Market design parameters
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Market Design
Load Shedding 

Penalty
Reserve Shortage Penalty

Capacity Market 

Demand Curve

Energy-only (EO) $9,001 ORDC ($9,000 Max) N/A

Vertical Capacity 

Demand Curve (VDC)
$3,500 $3,500 (~4%); $2,250 (4~96%); $200 (96~100%) Vertical (Fixed)

Sloped Capacity 

Demand Curve (SDC)
$2,100 $850(~96%); $300(96~100%) Sloped

* R. Surendran et al., “Scarcity Pricing in ERCOT,” FERC Technical Conference, June 27, 2016

<ERCOT Operating Reserve Demand Curve(ORDC)*> <MISO Capacity Market Demand Curve>
<PJM Capacity Market Demand Curve>



RESULTS
 Comparison of the generation portfolio in terms of ICAP and PRM from the 

market-based model
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RESULTS
 Comparison of the additional 

investment capacity (ICAP) 

from the least-cost and the 

market-based model
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CONCLUSIONS
 VRE influence electricity markets

– Incentive schemes may have substantial impacts on prices

 Open questions around resource adequacy with VRE

– Capacity markets are complex and not well understood

– Solutions need to enable economic entry and exit

 A multi-agent model for capacity expansion

– Considers market interactions between competing GenCos

– Models revenues from energy, reserves, and capacity markets

 Case study results

– Energy only design may work well

– Capacity markets benefit from using a sloped capacity demand curve

– Proper market signals can guide the market outcome towards a least-cost 

optimum, also with high VRE levels
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FUTURE WORK AND EXTENSIONS
 Incorporate transmission expansion planning

 Investigate other capacity remuneration policies

 Further enhance the computational performance

 Heuristics to find an equilibrium solution
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